公海赌船官网

关于我们

重力和引力的常量是怎么测量的

来源:未知| 标签:重力测量| 发布时间:2019-10-02 09:17| 点击:

  目前公认的结果是卡文迪许测定的G值为6.754×10-11N·m2/kg2,目前推荐的标准为G=6.67259×10-11N·m2/kg2,通常取G=6.67×10-11N·m2/kg2。需要注意的是,这个引力常量是有单位的:它的单位应该是N·m2/kg2。

  应该强调的是,在牛顿得出行星对太阳的引力关系时,已经渗入了假定因素。卡文迪许在对一些物体间的引力进行测量并算出引力常量G后,又测量了多种物体间的引力,所得结果与利用引力常量G按万有引力定律计算所得的结果相同。所以,引力常量的普适性成为万有引力定律正确的见证。

  这是一个卡文迪许扭秤的模型。这个扭秤的主要部分是这样一个T字形轻而结实的框架,把这个T形架倒挂在一根石英丝下。若在T形架的两端施加两个大小相等、方向相反的力,拉斯维加斯赌城石英丝就会扭转一个角度。力越大,扭转的角度也越大。反过来,如果测出T形架转过的角度,也就可以测出T形架两端所受力的大小。先在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球,大小两个球间的距离是可以较容易测定的。

  根据万有引力定律,大球会对小球产生引力,T形架会随之扭转,只要测出其扭转的角度,就可以测出引力的大小。当然由于引力很小,这个扭转的角度会很小。卡文迪许在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,就起到一个化小为大的效果,通过测定光斑的移动,测定了T形架在放置大球前后扭转的角度,从而测定了此时大球对小球的引力。卡文迪许用此扭秤验证了牛顿万有引力定律,并测定出引力常量G的数值。这个数值与近代用更加科学的方法测定的数值是非常接近的。

  万有引力 的测量大致可分为地球物理学方法测量、空间测量、实验室内测量等三大类. 地球物理学方法测量G 是利用大的自然物体(如形状规则的山体、矿井和湖泊等)作为吸引质量。 该方法的主要优点是作为吸引质量的自然物体很大, 引力效应明显. 但由于吸引质量的尺度、密度及其分布等都不能精确测量, 所以实验的精度比较低. 随着航天技术的发展, 人们期望在太空开展测G 实验。 空间测量方法可以避免地面实验室中遇到的两大难题:一个是地面实验环境中的附加背景引力场作用, 另一个是地面振动噪声的干扰, 就目前的情况来看,空间测量G 的方法面临着很多新的技术难题, 仍在探索之中.实验室内测量万有引力常数G 的常用工具是精密扭秤和天平。 与地球物理学方法相比, 精密扭秤的最大优点是将待测的检验质量与吸引质量之间的万有引力相互作用置于与地球重力场方向正交的水平面内, 这样就在实验设计上极大地减少了重力及其波动的影响。 天平可以绕刀口在垂直面内上下倾斜以探垂直方向的引力作用。常用的测量方法有: 直接倾斜法、补偿法、共振法、周期法和自由落体法等